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STOKES APPROXIMATION FOR TWO-Dimensional ~NDUCTIONLESS 
MA~NETO~YDRODYNAHIC FLOWS* 

N.A. BRITOV 

The applicability of the Stokes approximation for describing steady MHD 
flows in infinitely long cylinders when there is no motion along the 
generator is examined. The external magnetic field only has a 
rotational component; it is stationary, coplanar with the flow plane and 
transverse to the surface of the cylinder. Sufficient conditions are 
indicated connecting the Reynolds and Hartmann numbers for which the 
non-linear terms in the Navier-Stokes equations can be ignored. 
Efficient a priori limits are obtained on various norms of the absolute 
error of the flow velocity. 

The problem of establishing and analysing the region of validity of 
the Stokes approximation for describing the flow of an electrically 
conducting fluid was discussed at the 6th Riga Conference on 
Magnetoghydrodynamics /1/ and still remains largely unsolved. The first 
results in this area were summarized in the second chapter of /2/. The 
basic results obtained in 13~' to a certain extent filled the gap 
regarding the applicability of the Stokes approximation to some plane 
and axisymmetric MHD flows. Similar results were obtained in /4/ for 
two-dimensional flows in bounded multiply connected regions. 

2. Statement of the prob2em. We consider the flow of a viscous incompressible electri- 
cally.conducting fluid in a bounded closed region 8, whose boundary J? is formed by a finite 
number of piecewise-smooth closed contours I'* (i = 0, f,...,n), This region is the section of 
an infinitely long cylinder by a plane perpendicular to its generator. Outside the cylinder, 
the magnetic permeability of the medium equals that of vacuum. The surface of the cylinder 
is impervious to the fluid. The flow is excited by the motion given on r which velocity vr. 
There is no flow component in the direction of the generator. A magnetic field of induction 
B is superimposed on the fluid flow. The vector field B is assumed stationary and coplanar 
with the flow plane. The disturbance of the field by the fluid flow is negligibly small (the 
inductionless case), the field does not vanish on 
the outer normal to r) 

Q u F and satisfies the conditions (v is 

S B.vdrj=O, 
I-1 

~lW8~f‘,#0 

Regarding the velocity field v* = Y*T (t is the unit vector tangent to I'), we assume 
that it may be continued inside Q as a twice differentiable field v,,. The continuation 
technique will be described below. In dimensionless variables, the flow is described by the 
boundary-value problem 12/ 

V x (V x v) + V (P -I- 9, Re I v J2) = Rev x (V x V) - 

Has(xe-!-vxB)~B, V~v=O;e=const,x=vx~ 

v.v/r=o, v-a/r=& 

where Re>O is the Reynolds number and Ha> 1 is the Hartmann number; the field B is 
henceforth assumed known. 

The Stokes approximation to the solution of problem (l.l), 11.2) is the pair 
that satisfies system (1.11 with Re ==0 

(v,, PJ 

mation error is the pair 
and boundary conditions 11.2). The Stokes approxi- 

(Sv = v - v8, 6P = P -P,). we derive bounds in 
various norms on the vector field 6v. 

In what follows, 

2. Genc?zwtS&ed soik&bns and energy balance equations. As usual, /2, 5/, J(Q) is the 
space of infinitely differentiable solenoidal vectors with finite support in $2 and 
the Hilbert space obtained by closing 

H(8) is 
J G-3 in the norm generated by the scalar product 
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Here and below, 

]al,a?]s = (" X a,, y X a%> 

and for p=2 we omit the norm index. 
The generalized solution of problem (1.1), (1.2) is the vector field v (z), .I; E 8, which 

for any @ c J (Q) satisfies the integral identity 

(Vxv,V~~)=Re<Vxv,~Xv)+Ha~(xe+vxB,Bx~) (2.1) 

and such that v - vO EH(Q). 
We similarly define the generalized solution of the boundary-value problem for the Stokes 

approximation. Bounds on the norms of the Stokes approximation error will be determined from 
the energy balance equation for 8v. The equation is obtained from (2.1) if we set @J = 6v 
and represent v in the form v = v, + 6v 

]I'? X 6v;I?+ Ha2(( 6v x B(j2= Re((V x v,,6v X v,> + <V X 6v,6v X v.)) (2.2) 
The expression e(x,B x fjv) vanishes, because by the zero boundary conditions for 6v 

there exists a stream function 89 which is related to 6v by the equality 6v = - x(V&#). 

<%B x [xx (W$)]) = i s 6$(ri)B.vdri 
*=0 rl 

Since i@ is constant on ri (its value is a priori unknown), the last sum vanishes by 
the conditions on the field B. 

We see from (2.2) that in order to obtain bounds on the norms of 8v we need to bound 
the terms on the right-hand side of (2.2) by the norms ]] V X v~]],]] v, x B ll,lIvOIl,, /l V x vOll. 

These terms contain the field v,, whose norms also need to be bounded. To this end, as in 
(2.2), we write the energy balance equation for ug: 

IlV~u,(l*+Ha*l~u,xB(l*=-(Vxu8,VxvO)- 

Haa <u, x B, vO x B), u,=v,-vv,EH(n) 

(2.3) 

3. The fundmental inequality. To estimate the terms on the right-hand side of (2.2), 
tie define a curvilinear system of coordinates in 52 associated with the geometry of the field 
B. The local basis of this system is formed by the unit vectors fir = IB I-lB a peJ_ PI. In 
this basis 

6v = 64 + 6%B,, u, = UlSl + u&B 

Applying the Cauchy inequality to the terms on the right-hand side of (2.2), we obtain the 
bounds 

where it remains to estimate N,. Expanding 6v and u, in the basis (B,? I%). we use the 
Hijlder inequality and the multiplicative inequality /5/ to obtain 

N, Q NO + II (hu, - h,) x II < C, II vo lip II V x 6~ II + 
c,, (II 6% II II vu, IP’~ II %SI Ill-*‘q + II ru, II II vgv* Ila’q II 6u*B, IP’q) 

No = (( 6v x v. I(, C, = 1/z (--&)p” dl-sl~, C,, = q’-Plgdalq 

(2~ ~(4, 4(q and d is the diameter of Q). 
Substituting this bound into (3.1) and applying Young's inequality, we obtain the follow- 

ing bounds on the terms in the right-hand side of (2.2): 

](V x v,, 6v x v,) I < c, II VI3 I& II r x v, II II v x 6v II + 
c,, (R I/ V x v,Il II v x 6v II f PII v x v, II II v x u* II x 

[2&p I( V x 6v ll + (4 - 2)e;q’4-a) II 64, III) 

(3.2) 
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I<0 x 6v,6v x v,)I<cc,IIv~llpll~ x 6vI12+C,*{RII~ x 6vllV 
v*q- ll v x “, ll [(p + 2)e;q”q+*) (1 v x 6v II* + (q - 2)ep’(q-z’ II lb,& II’]) 

R = II v x II, 1pq II IL*& p-*/q 

Here we have used the bounds 
II VUt II < II v x “8 II9 II T6vi II < II v x 6v II 

It remains to obtain bounds on 11 V x 11.11 and IIu&II. To this end, we use the energy 
balance Eq.(2.3). The terms on the right-hand side of (2.3) are bounded by the Cauchy in- 
equality, and isolating complete squares we obtain 

II V x u, II Q II V x v. II + ‘4~ Ha II v. II 
I’ 4hIl < ‘/tII V x v. II i- CL Ha II voI IHa-’ 

p-M/m, O<Yn=i$~Bj, M=;s&Blj 

Substituting these bounds into (3.2), (3.1), and (2.3) and grouping similar terms, we 
obtain the basic inequality 

(s/p - C, Re (1 v. lip - 4”‘J-‘C,,M,1 Re Ha*I@)(( V X 6v Ha + 

[(m HaY - (q - 2)C,, (C,, Be M,,)e~~(‘J-2)lll Su,pI II2 < 
Re {C, ll v. II,MI1 II V X 6v II + 4(4+“-s,l*‘Q&M,,a Ha219 x 

k -k Wa-'II V x 6~ II + (q/2 - ~)II~u,$~ 111 
Mkl = k II V x v. II + ~2 II v,, 11, Czp = 146-q (q + 2)n+*q-2’]ll(~+aJ 

(3.3) 

In (3.3), 

E q - JJa-Z+Ug, e2 = [42/4q-1 (q + 2)C,, Re M,,]tn+Ni@@ 1- 

4. Constructing the vector field vo. We will construct the vector field using a modifi- 
cation of the Hopf technique /6/. In view of the imperviousness of the boundary, the field 

v0 can be represented in the form vO = v X (Xe (z)lpo (2)x) =xe (x)VIcldx x i- 90% (I) X x, x E P, 
e > 0. Here the function lpO(x) is twice differentiable in P and satisfies the boundary 
conditions 

40Ir = 0, v.V'go lr = --VT 

The function x8(z) has the form /7/ 

where p(x) is the distance from the point XEQ to the nearest boundary contour; edoes 
not exceed half the minimum distance between the contours rf. 

By the choice of x8(x), the field vO vanishes outside 8, - a strip of width e 
adjoining r. It is therefore sufficient to determine the specific form of the function $,,(I) 
in this strip, continuing it arbitrarily outside the strip with the required smoothness. If 
r satisfies the Lyapunov condition, then in Q, IJ r we obtain 

qO (x) = -0, (0,) P (z), 2.k E c, (r) (4.1) 
where a, is the value of the natural parameter of the point zr, which is the point of the 
contour r closest to zE 61. 

Let 

Lr is the total length of the contours of I',k is the local curvature of the contours of I', 
K = sup 1 k I, ri, is the j-th smooth piece of the contour ri and e < e, = min [pmi3. (2K)-'l. 

rU 
Simple but tedious algebra leads to the bounds 
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(i.2) 

If $0(z) is given by (4.1), then 

(4.3) 

The quantity E is selected so as to ensure the least order of increase in Ha of the 
sum II V x v. II - Ha II v. II; specifically e = e,Ha-1. 

5. The conditions for the admissibility of the Stokes approzimation. Error bounds. In 
what follows q > 8, p =2q/(q - 4). Substituting the bounds (4.2) into (3.3), we obtain the 
inequality 

(5.1) 

Re Ha*/g {[C,MvM,s,'IP + 4(4-@/*4 (1 + 4) C,, @I 11 V x 6~ 11 $ 

4(4-q)i*a (412 - 1) CIs~s12 Ha II h$, II), 

We see from (5.1) that the conditions for the Stokes approximation to be admissible are 
identical with the conditions for the coefficients of ))V X 8~112 and Ij81&1)2 to be 
positive. They thus have the form 

Ha > Rem/@-4) max ((42n-‘ly2,C,, $ (5.2) 

2CpM~Mpe~‘P)2q/(‘1-2). [?3m-2C,P (q _ 

2)q-* (CIPM,J24]Ws-4)) 

Assume that Ha satisfies condition (5.2). Then separating complete squares in (5.1), 
we obtain the error bounds 

I( V X 6v 11 Q 2 Re Haz/qX,,, II 6v&, I( < 2 Re Haa/q-lC1, (5.3) 
Z,, = k [C,M~M,E,~~" + 4(4-‘J)/*Q (1 + q) C,,p,,zl + 

14(4-@129 (q/2 - 1) c,.#p. k, 1 = 1, 2 

Using the bounds (5.3) and the conditions imposed on the field B, we can obtain bounds 
on the norms 11 &II, and (IbIj,,2<r<m. To this end, we need a bound on II&$x/. Clearly, 

II 6v x B 11 = 1) V6g.B II. In the basis &, pz) we have B.V&& = IB I(VS$.pl). Therefore 

II VSIJ.@,II < pl(I &&\I. Since 6+ is defined, apart from an additive constant, we may assume 
that 69 Jr,= 0, &$ Ir,= Ci (i = I,..., n) where Ci is a constant. The st_eam function defined 
in the multiply connected region R can be continued to a function 
connected region Q, by taking @ = C, outside the contours ri. 

I$+ defined in a simply 
By the conditions imposed 

on B, there are sections of the contour I',on which v*B#O. Repeating for each of these 
sections the arguments that lead to the derivation of the Friedrichs inequality /5/, we obtain 
the bound 

p (1 6v,B, II > II v @$I II >, d-’ II Gx II > d-’ II wx II (5.4) 

The bound for IISgxll now follows from (5.4) and (5.3). Hence we obtain the required 
bound 

I( &v (I = ( <b#x, v x 6v> II”, < pd II w-b II”. II v x 6v 11”. (5.5) 

From (5.5) and the multiplicative inequality, we obtain a bound for ((&II,, 2(r( 00, 
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(5.6) 

If we only need the dependence on the parameters He and Ha and the form of the constant 
multipliers is immaterial, the bounds (5.3), (5.5) may be rewritten as 

II V X 6~11 Q CV Re Haa, &$,I1 < CB Re Ha-l+a 

11 6v II < C, Re Ha-'/d@, a = 2/q 

(5.7) 

(Cv, Cl?, Cm are functions of VT, q and the geometry of Q and IJ. 

6. Discussion of the results. The bounds (5.7) were reported without proof in /7/. 
The example in /6/ shows that the first two bounds in (5.7), by the arbitrariness of a < il,, 
are close to the limiting bounds (in the sense of the dependence onHa) with a = 0. The 
limiting bounds are unattainable in the framework of the methods applied above, which are 
based on the multiplicative inequality, because they correspond to q =DD, when the multi- 
plicative inequality is meaningless. 

As we have noted before, the inequalities describing the region of admissible values of 
Re and Ha were obtained from the conditions for the expressions on the left-hand side of 
inquality (5.1) to be positive. We see from the construction of these expressions that when 
inequality (5.2) is satisfied; viscous and electromagnetic forces in system (1.1) predominate 
over convective forces. 

The derivation of bounds of the type (5.7) in stronger norms is problematic, because 
already [SvlH =I1 V x 6vII does not tend to zero as Ha+ by. Yet we can expect that the 
corresponding relative error norms will tend to zero. 
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3. 

4. 

5. 

6. 
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